Targeting the Chromatin Regulatory System

FCGHORN

Broadening the Impact of Precision Medicines for Oncology and Other Diseases

THERAPEUTICS Research & Development Webinar

June 15th, 2021

Agenda

9:00 – 9:10 a.m.	Welcome and Introduction Adrian Gottschalk, President and CEO, Foghorn Therapeutics
9:10 – 9:25 a.m.	Chromatin Regulatory System – Disease Relevance Cigall Kadoch, Ph.D., Broad Institute, DFCI, Scientific Co-Founder Foghorn Therapeutics
9:25 – 9:45 a.m.	Gene Traffic Control Platform Steve Bellon, Ph.D, SVP, Head of Drug Discovery, Foghorn Therapeutics
9:45 – 10:05 a.m.	FHD-286 – Clinical Applications of Dual BRM/BRG1 Inhibition Sam Agresta, MP, MPH & TM, CMO, Foghorn Therapeutics
10:05 – 10:20 a.m.	Acute Myeloid Leukemia Eytan Stein, M.D., Memorial Sloan Kettering Cancer Center
10:20 – 10:30 a.m.	Synovial Sarcoma – FHD-609 Sam Agresta, MP, MPH & TM, CMO, Foghorn Therapeutics
10:30 – 10:45 a.m.	Targeting the Chromatin Regulatory System in Cancer Howard "Skip" Burris III, MD, FASCO, FACP, Sara Cannon Research Institute
10:45 – 11:00 a.m.	Q&A

 \mathbf{C}

Welcome and Introduction

Adrian Gottschalk

Chief Executive Officer, Foghorn Therapeutics

Forward-Looking Statements

C

This presentation contains forward-looking statements. All statements other than statements of historical facts contained in this presentation are forward-looking statements. In some cases, you can identify forward-looking statements by terms such as "may," "will," "should," "expect," "plan," "anticipate," "could," "intend," "target," "project," "contemplate," "believe," "estimate," "predict," "potential" or "continue" or the negative of these terms or other similar expressions, although not all forward-looking statements contain these words. Forward-looking statements include, but are not limited to, statements concerning: the initiation, timing, progress and results of our research and development programs and preclinical and clinical trials, our ability to advance product candidates that we may develop and successfully complete preclinical and clinical studies; our ability to leverage our initial programs to develop additional product candidates using our Gene Traffic Control Platform; the impact of the COVID-19 pandemic in our and our collaborators' business operations, including our research and development programs and preclinical studies; developments related to our competitors and our industry; our ability to expand the target populations of our programs and the availability of patients for clinical testing; our ability to obtain regulatory approval for FHD-286, FHD-609 and any future product candidates from the FDA and other regulatory authorities; our ability to identify and enter into future license agreements and collaborations; our ability to continue to rely on our CDMOs and CROs for our manufacturing and research needs; regulatory developments in the United States and foreign countries; our ability to attract and retain key scientific and management personnel; the scope of protection we are able to establish, maintain and enforce for intellectual property rights covering FHD-286 and FHD-609, our future products and our Gene Traffic Control Platform; and our use of proceeds from our initial public offering, estimates of our expenses, capital requirements and needs for additional financing. Any forward-looking statements represent the Company's views only as of today and should not be relied upon as representing its views as of any subsequent date. The Company explicitly disclaims any obligation to update any forward-looking statements. The Company's business is subject to substantial risks and uncertainties which are described under the heading "Risk Factors" in our Annual Report on Form 10-K filed with the U.S. Securities and Exchange Commission and are accessible on the SEC's website at www.sec.gov.

The Foghorn Commitment

OUR PLEDGE

At Foghorn, we pledge to partner with patients as we work to discover and develop new, effective therapies for a wide spectrum of diseases, including many types of cancer. Every member of our team is committed to making a difference in the lives of others.

Broadening the Impact of Precision Medicines for Oncology and Other Diseases: Targeting the Chromatin Regulatory System

Dysregulation of the Chromatin Regulatory System Has Been Implicated in up to 50% of All Cancers

Based on exome sequencing, the chromatin regulatory system is implicated in ~50% of all cancers

2030 global oncology market opportunity

First Two Programs in the Clinic, Broad Pipeline Advancing

Precision Oncology / Breadth and Depth

Program / Target	Modality	Discovery	IND-enabling	Phase 1	Phase 2	Phase 3	Global Rights
FHD-286 (BRG1 / BRM)	Enzyme inhibitor	AML Uveal melanoma		Earl	y Clinical Data (Q4 2021) y Clinical Data (Q4 2021)		FCGHORN' THERAPEUTICS
FHD-609 (BRD9)	Protein degrader	Synovial sarcoma		Ear	y Clinical Data (H1 2022)		FCGHORN THERAPEUTICS
Selective BRM	I) Enzyme inhibitor	BRG1 mutated cancers					
	II) Protein degrader	BRG1 mutated cancers					
Selective ARID1B	Protein degrader	ARID1A mutated cancers					FCGHORN' THERAPEUTICS
Synthetic Lethal Targets (multiple)	I) Enzyme inhibitors						ECGHORN'
	II) Protein degraders						THERAPEUTICS
Transcription Factors (multiple)	I) Transcription factor disruptors						FCGHORN
	II) Protein degraders						THERAPEUTICS
Partnered program (undisclosed)	Transcription factor disruptor						
Gene Traffic Control [®] Platform							

Agenda

9:00 – 9:10 a.m.	Welcome and Introduction Adrian Gottschalk, President and CEO, Foghorn Therapeutics
9:10 – 9:25 a.m.	Chromatin Regulatory System – Disease Relevance Cigall Kadoch, Ph.D., Broad Institute, DFCI, Scientific Co-Founder Foghorn Therapeutics
9:25 – 9:45 a.m.	Gene Traffic Control Platform Steve Bellon, Ph.D, SVP, Head of Drug Discovery, Foghorn Therapeutics
9:45 – 10:05 a.m.	FHD-286 – Clinical Applications of Dual BRM/BRG1 Inhibition Sam Agresta, MP, MPH & TM, CMO, Foghorn Therapeutics
10:05 – 10:20 a.m.	Acute Myeloid Leukemia Eytan Stein, M.D., Memorial Sloan Kettering Cancer Center
10:20 – 10:30 a.m.	Synovial Sarcoma – FHD-609 Sam Agresta, MP, MPH & TM, CMO, Foghorn Therapeutics
10:30 – 10:45 a.m.	Targeting the Chromatin Regulatory System in Cancer Howard "Skip" Burris III, MD, FASCO, FACP, Sara Cannon Research Institute
10:45 – 11:00 a.m.	Q&A

 \mathbf{C}

Chromatin Regulatory System – Disease Relevance

Cigall Kadoch, Ph.D.

Broad Institute, DFCI, Scientific Co-Founder of Foghorn Therapeutics

Targeting chromatin regulatory system perturbations in human disease

A new class of opportunities

Cigall Kadoch, Ph.D. Dana- Farber Cancer Institute Harvard Medical School Broad Institute

DNA modification Histone modification Chromatin remodeling complexes

Nucleus

DNA modification Histone modification Chromatin remodeling complexes

Nucleus

DNA modification Histone modification Chromatin remodeling complexes

Nucleus

Defects in the control of chromatin structure are a major <u>cause</u> of human disease

Differentiation

Lineage commitment and restriction

Response to

stimuli

Human genetic studies unlock new biology

racTGaTE Cancer Neurodevelopment disorders Immune conditions Heart development and disease Others

GGGGGGG

Artist credit: Sonya Parpart-Li

accaGas

T.C.

Cancer mutations span multiple cellular pathways

~300 driver genes >10,000 tumor samples sequenced >3,400 putative missense driver mutations

30+ Cancer Types

TCGA Tumor Types

Adapted from Bailey et al., *Cell* 2018

Chromatin regulatory system disruptions are extensive

30+ Cancer Types

~300 driver genes >10,000 tumor samples sequenced >3,400 putative missense driver mutations

0%

50%

25%

Cellular Pathways

TCGA Tumor Types

Adapted from Bailey et al., *Cell* 2018

Chromatin regulatory system disruptions are extensive

30+ Cancer Types

Cellular Pathways

TCGA Tumor Types SWI/SNF complexes, other ATP-dependent remodelers, helicases, etc.

~300 driver genes >3,400 putative missense driver mutations

Adapted from Bailey et al., *Cell* 2018

An example: mutational landscape of mSWI/SNF genes in human cancer

Mammalian SWI/SNF complexes: chromatin remodeling machines

•Three distinct final forms of complexes (BAF, PBAF, ncBAF) with specific subunits •Combinatorial assembly—> several hundred total possibilities

• Mutually exclusive paralog subunits (i.e. SMARCA4/SMARCA2 (BRG1/BRM), ARID1A/ARID1B)

> Mashtalir et al., Cell 2020 Mashtalir et al., Cell 2018 Michel et al., Nat Cell Biol 2018

Mammalian SWI/SNF complexes: chromatin remodeling machines

mSWI/SNF family complexes: cBAF, PBAF, and ncBAF types

Mashtalir et al., Cell 2018 Michel et al., Nat Cell Biol 2018

mSWI/SNF: diverse assemblies yield diverse opportunities for targeting

Mashtalir et al., Cell 2018 Michel et al., Nat Cell Biol 2018

Compositional and functional diversity of mSWI/SNF complexes

Multi-subunit/multi-cancer studies potentiate identification of new mechanisms

SMARCA4/ Non-small cell lung cancer (12% SMARCA2 SCCOHT (~100%)

SMARCB1

Malignant rhabdoid tumor (>98%) Atypical teratoid/rhabdoid tumor (>98%) Epithelial sarcoma (>90%) Pediatric chordoma (50%)

Valencia et al., Cell, 2019 Nakayama et al., *Nature Genetics* 2017

> **SMARCE1** Clear cell meningioma (~100%)

> > Kadoch and Crabtree, *Cell* 2013 McBride, Pulice et al., Cancer Cell 2018

Michel, D'Avino et al., Nat Cell Biol 2018

McBride, Mashtalir et al., Nat Struct Mol Bio 2020

SS18 Synovial sarcoma SS18-SSX (100%)

- SA4-deficient thoracic sarcomas (~100%)
- Pan et al.,
- Nature Genetics 2019

MARCA4

ARID1A/B

SMAR

ARID1A/ **ARID1B**

Ovarian clear cell carcinoma (68%) Dedifferentiated endometrial (~100%) Colorectal cancer Breast cancer Hepatocellular carcinoma Pancreatic cancer Neuroblastoma

(Fusion oncoprotein)

Multi-subunit/multi-cancer studies potentiate identification of new mechanisms

Biochemical assembly and modularity

Mashtalir et al., Cell 2018

SMARCB1

Malignant rhabdoid tumor (>98%) Atypical teratoid/rhabdoid tumor (>98%) Epithelial sarcoma (>90%) Pediatric chordoma (50%)

Valencia et al., Cell, 2019 Nakayama et al., *Nature Genetics* 2017

> **SMARCE1** Clear cell meningioma (~100%)

> > Kadoch and Crabtree, *Cell* 2013 McBride, Pulice et al., Cancer Cell 2018

Michel, D'Avino et al., Nat Cell Biol 2018

McBride, Mashtalir et al., Nat Struct Mol Bio 2020

SS18 Synovial sarcoma SS18-SSX (100%)

Multi-subunit/multi-cancer studies potentiate identification of new mechanisms

Biochemical assembly and modularity

Mashtalir et al., Cell 2018

SMARCB1

Malignant rhabdoid tumor (>98%) Atypical teratoid/rhabdoid tumor (>98%) Epithelial sarcoma (>90%) Pediatric chordoma (50%)

Valencia et al., Cell, 2019 Nakayama et al., *Nature Genetics* 2017

> **SMARCE1** Clear cell meningioma (~100%)

> > Kadoch and Crabtree, *Cell* 2013 McBride, Pulice et al., Cancer Cell 2018

Michel, D'Avino et al., Nat Cell Biol 2018

McBride, Mashtalir et al., Nat Struct Mol Bio 2020

SS18 Synovial sarcoma SS18-SSX (100%)

Much more to do: chromatin remodeler complex mutations are widespread

cBAF Non-truncating Neurodevelopmental Disorder (NDD) Mutations

Valencia et al., In Preparation

Recurrent cancer-associated mutations highlight broad opportunity for precision medicine

- Actionable dependencies arise from:
 - Paralog deletions/mutations
 - SMARCA4/SMARCA2, ARID1A/B, others
 - Shifted assembly and activities of complexes
 - cBAF-perturbed cancers—> BRD9/ncBAF
 - Transcription factor network across cancers
 - SMARCA4/2 dual ATPase inhibition
 - Locus-specific/process-specific activity
 - Additional targets in development (see pipeline)
 - Chromatin remodelers with other functions (DNA repair, DNA damage, loop architecture, others)

Chromatin remodeling complexes are *major determinants* of chromatin architecture and gene expression

Tissue-specific context

Therapeutic approaches

Cell extrinsic sequelae

Gene Traffic Control Platform

Steve Bellon, Ph.D. SVP of Drug Discovery, Foghorn Therapeutics
Our Gene Traffic Control Platform Makes It Possible to Understand and Drug Genetic Dependencies within the Chromatin Regulatory System

Integrated, Scalable, Efficient – Repeatable Paradigm

THERAPEUTICS

Rational for BAF Targets: BRM/BRG1 Threads Through Entire Complex

FCGHORN THERAPEUTICS

Yeast Swi/Snf cryo EM structure

Platform is Powered by Ability to Produce Components at Scale

Drives Drug Discovery Pipeline with Cutting Edge Technology

Protein Degradation – Evolving Therapeutic Modality

Heterobifunctional Degrader Platform

Foghorn Pursuing >8 Targeted Protein Degraders

Bioinformatics	Optimal E3 ligase target pairingProteomics			
Screening and Characterization	 Proprietary chromatin remodeling assays Protein degradation kinetics 			
Chemical Toolbox	 Proprietary library of drug-like linkers and E3 ligase binders Chemistry to rapidly identify and optimize degraders 			
Structural and Computational Approaches to Degrader Design	 Structure based optimization of binders Ternary complex crystal structures and modeling approaches for degrader optimization 			
Optimization of Degrader Drug Properties	 Guidelines for both of oral and IV administered degraders PKPD/efficacy and safety modeling to optimize dosing and scheduling 			

Targeting ARID1A Mutated Cancers: ARID1B Protein Degrader

Advantaged by Gene Traffic Control Platform and Protein Degrader Capabilities

Gene Traffic Control Platform

- Platform produces BAF complexes and subcomplexes containing either ARID1A or ARID1B at scale
- Enables proprietary screens against ARID1B

Protein Degrader Capabilities

 Utilize protein degrader toolbox to create ARID1B hetero-bifunctional degraders

Biology & Opportunity

- ARID1A is the most highly mutated subunit of the BAF complex in cancer
- ~5% of all tumors harbor ARID1A mutations including; endometrial cancer (~40%), bladder cancer (~25%) and ovarian (~15%)
- Synthetic lethal relationship with ARID1B

HERAPEUTICS

First Two Programs in the Clinic, Broad Pipeline Advancing

Precision Oncology / Breadth and Depth

Program / Target	Modality	Discovery	IND-enabling	Phase 1	Phase 2	Phase 3	Global Rights
FHD-286 (BRG1 / BRM)	Enzyme inhibitor	AML		Ea	rly Clinical Data (Q4 2021)		
		Uveal melanoma		Ea	rly Clinical Data (Q4 2021)		FCGHORN' THERAPEUTICS
FHD-609 (BRD9)	Protein degrader	Synovial sarcoma		Ea	rly Clinical Data (H1 2022)		FCGHORN THERAPEUTICS
Selective BRM	I) Enzyme inhibitor	BRG1 mutated cancers					
	II) Protein degrader	BRG1 mutated cancers	IND 2022				
Selective ARID1B	Protein degrader	ARID1A mutated cancers					FOGHORN' THERAPEUTICS
Synthetic Lethal Targets (multiple)	I) Enzyme inhibitors						FOGHODN
	II) Protein degraders						THERAPEUTICS
Transcription Factors (multiple)	I) Transcription factor disruptors						FOGHORN
	II) Protein degraders						THERAPEUTICS
Partnered program (undisclosed)	Transcription factor disruptor						
Gene Traffic Control [®] Platform							

Selective BRM Modulators for BRG1 Mutated Cancers

Enzymatic Inhibitor and Protein Degrader Programs

BRG1 Mutations Create a Genetic Dependency on BRM

Selective BRM Modulators Overview

* US, EU5, Japan

FCGHORN THERAPEUTICS

BRG1 Mutated in ~5% of All Tumors

Broad Addressable Patient Population

BRG1	10%						
KRAS	29% 💻	1 m 1 m					
EGFR	26%	1 1 11 1			_		
ALK	7% 💷	1 I II I		1	I	11	
RET	4%	1 H H H			1	1	
MET	7%	1 1 1			Í.	1	
Genetic Alt	eration 🖕 Infrar	me Mutation (putative driver)	Inframe Mutation (unknown s	ignificance)	Missense Mu	tation (putative	driver)

Missense Mutation (unknown significance) Truncating Mutation (putative driver) Truncating Mutation (unknown significance) Fusion Amplification Deep Deletion No alterations

BRG1 mutated in up to 10% of NSCLC tumors, minimal overlap with other mutations

THERAPEUTICS

In Vivo Target Engagement With ~20X Selective BRM Selective Inhibitor

PD Modulation in the H1299 BRG1-Null NSCLC PD Model Establishing a Direct Exposure-Response Relationship

BRM Selective Inhibitor In vivo Efficacy

Demonstrates PK/PD and In vivo Efficacy in a BRG1 Mutant Lung CDX Model

Scaffolds With Enzymatic Selectivity > 100X

BRG1 vs BRM ATPase activity

BRM IC50 (uM)

Strong Correlation from Enzyme to Cellular Reporter Assays

Advancing BRM Selective Degraders

Achieving Complete BRM Degradation

Degraders cause time- and dose-dependent BRM degradation, antiproliferative effects in A549 BRG1 mutant NSCLC lung model

Target Hopping to Related Helicase Targets

ATP Dependent Helicases

Potential to Broaden Pipeline and Further Validate Platform Breadth

Target Hopping to Related Helicase Targets

Helicase IC50 uM

Potency Improved to Sub 100 nM

FCGHORN[®] THERAPEUTICS

Novel Approach to Targeting Transcription Factors

Disrupting Transcription Factor – Chromatin Remodeling Complex Interactions

A New Approach to Drugging Transcription Factors

Enabled by Proprietary Ability to Purify and Synthesize Chromatin Regulatory System Components

TFs are compelling drug targets...

- Highly involved in gene expression
- Implicated in range of cancers and other diseases

...but historically difficult to target

- Featureless surface: no druggable binding pocket
- Tight interactions with DNA: undruggable affinities

Eoghorn has a new approach

Foghorn has a new approach focusing on interaction with BAF

- Druggable binding pockets
- Druggable affinities

Transcription Factor-Chromatin Remodeling Complex Interactions

Unique Insights in Where and How Transcription Factors Bind

FCGHORN[®] THERAPEUTICS

1

SPI1: Transcription Factor SPI1 Dependency in AML

ATAC-seq Shows SPI1 Regulatory Elements are BAF Dependent

ATAC-Seq measures open regions of genome

FCGHORN What motifs exist at newly closed chromatin?

THERAPEUTICS

All SPI1 Binding Signature

Full BAF Mapping Identifies Key Interactions With SPI1

TR-FRET Based Screening Assays Constructed

FCGHORN THERAPEUTICS

TR-FRET

Control curves have key interaction residues deleted from BAF subunit

Highly Scalable Approach and Significant Unmet Medical Need

Potential to Drug > 100 TFs Associated with BAF

- >100 TFs estimated associated with BAF
- Foghorn pursuing multiple TFs in parallel
- Approach highly scalable and potential broad application other chromatin remodeling complexes and other diseases

- Merck collaboration to drug single specified transcription factor target
- \$425 million in up-front, research, development and sales-based milestones
- Up to low double-digit royalties on product sales

FHD-286: Clinical Entry Point - AML and Uveal Melanoma

Sam Agresta, MP, MPH & TM Chief Medical Officer, Foghorn Therapeutics

FHD-286 Targets Abnormal Dependencies on BAF in Cancer

Target / Approach	 BRG1/BRM ATPase Small molecule, allosteric, oral enzymatic inhibitor 			
Indications	 Acute myelogenous leukemia (AML) Uveal melanoma Indication expansion work ongoing in multiple solid tumors 			
Mutation / Aberration	 AML: Elevated BRG1-BAF / TF activity in AML blast cells Uveal Melanoma: GNAQ/GNA11 mutated UM is driven by dependency on BAF / TF activity 			
Program Status / Milestones	 Phase I studies enrolling in AML and metastatic uveal melanoma Phase I data as early as Q4'21 			
New Patients Impacted / Year*	 AML: Over 20,000 relapsed and/or refractory patients Uveal melanoma: Over 5,000 patients 			

BAF Chromatin Remodeling Complex

- BRM/BRG1 is the engine (ATPase) of the BAF chromatin • remodeling complex
- **BRG1 & BRM are highly similar proteins** •

* US, EU5, Japan

AML & Dependency on BRG1 / Lineage Dependent TF Interactions

FCGHORN[®] THERAPEUTICS

AML Dependent on BRG1 / Lineage TF Interaction

C

BRG1 Inhibition Leads to Loss of SPI1 (PU.1) Occupancy on Chromatin

Four TF's Associated With 70% of AML

FCGHORN THERAPEUTICS

Tumor Growth Inhibition with FHD-286 Treatment Observed by Bioluminescence

Imaging in a Disseminated AML model

FHD-286 Survival Advantage in Disseminated AML Model

FHD-286 Shows Broad Efficacy Across AML Patient Derived Samples

Notable Patient ID	Deep Response	Pathology Review	Disease Status
1690AML1	Y	AML	Secondary
1695AML1	Y	AML/MDS	Secondary
1696AML1	Y	AML	Secondary
1701AML1	Y	AML	Secondary
1893AML1	Y	AML	R/R
1899AML1	Y	AML	R/R
1990pAML1	Y	AML	R/R
1991pAML1	Y	AML	de novo
2041AML1	Y	N/A	de novo
2043pAML1	Y	AML	R/R
2059AML1	Y	AML	R/R
1682AML1	~	N/A	N/A
1689AML1	~	AML/MDS	de novo
1684AML1	N	CML	R/R
1924AML1	N	AML/MDS	R/R

Y = Deep reduction in blast cells ~ = Partial reduction

N = No response

1695AML1 – BM-secondary AML

- Response observed in a majority of primary AML samples, irrespective of prior treatment or disease stage
- Additional data set from patient derived samples demonstrate mutation agnostic responses

FHD-286 Shows Effect Across a Range of Mutations in AML Patient-Derived Samples

Patient Samples

Potential PD Marker: AML TFs and Gene Signatures

BAF Regulates SPI1, A Key Transcription Factor in AML Subsets

Uveal Melanoma Disease Overview

Primary Disease:

- ~1,500 cases diagnosed each year, US
- Age at diagnosis: early 60s-median, 70s-peak
- ~30% asymptomatic
 - Lesion found on routine eye exam
- Mild symptoms such as blurry vision in one eye
- 95+% are primary disease at diagnosis

Metastatic Disease:

• Over 50% of patients develop metastatic disease, typically in the liver.

Metastatic Uveal Melanoma

Disease Overview

- Treatment: No approved treatments
 - Liver Directed: Chemoembolization, radioablation, immunotherapy
 - Systemic: Ipilimumab + nivolumab, dacarbazine, temozolomide
- Majority (~80%) of patients die within 1 year of detection of metastasis
- Median survival is ~6-9 months

High Unmet Need

Rantala, et. al, Melanoma Research, 2019, Vol 29 No 6

Therapeutic Rationale for Uveal Melanoma: Dependency on MITF / SOX10 TF's and BAF Complex Interaction

Inhibiting BRG1/BRM to Shut Down the Abnormal TF Interaction with the BAF Complex

FCGHORN THERAPEUTICS

Dual BRG1/BRM Inhibition

SOX10

SOX10 Enhancers

16

14.

log10(Adjusted P-Values)

2

DMSO FHT-1015 DMSO

FHT-1015

DMSO

DMSO FHT-1015

DMSO

DMSO FHT-1015

FCGHORN

THERAPEUTICS

≥ FHT-1015 DMSO

FHT-1015

FHT-1015

Disrupts the SOX10-MITF Transcriptional Axis in Uveal Melanoma

Figure 5. BAFi disrupts the SOX10-MITF transcriptional axis. A. Differential gene expression as measured by RNA-seq in 92-1 cells treated with DMSO or FHT-1015. B. GSEA identified SMARCA4 targets, melanoma, and pigmentation gene sets as enriched among genes down-regulated by FHT-1015 treatment. C. Nascent transcripts at the SOX10 gene body and enhancer are down-regulated within 1 hour of FHT-1015 treatment in MP46 UM cells. D. Genome browser view of the SOX10 locus, showing the loss of accessibility, SMARCA4, and TF occupancy at the SOX10 enhancers following FHT-1015 treatment in 92-1 cells. E. Forced expression of SOX10 from a BAF-independent promoter can rescue the growth inhibition phenotype elicited by FHT-1015.

FHD-286 was Associated with Dose-Dependent Tumor Regression in Uveal Melanoma CDX Models at Tolerated Doses

FCGHORN THERAPEUTICS

BRG1/BRM Inhibition Induces Apoptosis in UM Cell lines

Significantly faster onset (3 days) and potent growth inhibition with apoptosis in UM cell lines

FHD-286 Clinical Development Plan

Two Parallel Phase 1 Studies Activated

CLINICAL PLAN

AML & Uveal Melanoma FIH Phase 1 Studies

Relapsed / Refractory AML & MDS

Metastatic Uveal Melanoma

Trial Designs

- Single patient accelerated titration (n=1)
- Convert to 3+3 once relevant PK/PD, safety or clinical activity observed
- Retrospective biomarker analysis to further evaluate safety and efficacy
- Assess safety, PK, biomarkers and efficacy

Expansion cohorts in AML, UM and potentially other indications Potential for entry into definitive efficacy trials in AML

Potential for entry into definitive efficacy trials in metastatic uveal melanoma

Potential for Indication Expansion Beyond AML and UM

Clinical data as early as Q4 2021

Indication Expansion Opportunities for FHD-286

Role of specialized composition of SWI/SNF complexes in prostate cancer lineage plasticity

Joanna Cyrta et al.#

SMARCA2-deficiency confers sensitivity to targeted inhibition of SMARCA4 in esophageal squamous cell carcinoma cell lines

Katharina Ehrenhöfer-Wölfer ¹, Teresa Puchner¹, Cornelia Schwarz¹, Janine Rippka¹, Silvia Blaha-Ostermann¹, Ursula Strobl¹, Alexandra Hörmann¹, Gerd Bader ¹, Stefan Kornigg¹, Stephan Zahn¹, Wolfgang Sommergruber¹, Norbert Schweifer¹, Thomas Zichner ¹, Andreas Schlattl¹, Ralph A. Neumüller¹, Junwei Shi ², Christopher R. Vakoc³, Manfred Kögl¹, Mark Petronczki¹, Norbert Kraut¹, Mark A. Pearson¹ & Simon Wöhrle ¹

Memorial Sloan Kettering Cancer Center

Acute Myeloid Leukemia in 2021

Eytan M. Stein, MD Director, Program for Drug Development in Leukemia Leukemia Service Memorial Sloan Kettering Cancer Center New York, New York

Acute Myeloid Leukemia

AML is Complicated

Overall Survival in AML

Burnett A et al. JCO 2011;29:487-494

Survival Can be Stratified Based on Genetics

Image: Memorial Sloan KetteringCancer Center

Metzeler, Blood 2016

Paradigms for Treating Newly Diagnosed AML

Gilteritinib for Relapsed/Refractory AML with FLT₃ Mutation

Hemorial Sloan Kettering Cancer Center

Perl A, et. al, NEJM 2019

Enasidenib (IDH2) Overall Survival – All R/R Patients

Image: Memorial Sloan KetteringCancer Center

Stein EM, Dinardo CD, et al, Blood 2017

Ivosidenib (IDH1) Overall Survival – All R/R Patients

A Overall Survival

No. at Risk

Combining Midostaurin with Chemotherapy

Hemorial Sloan Kettering Cancer Center

Stone R, et. al, NEJM 2017

Aza/Ven

Image: Memorial Sloan KetteringCancer Center

Dinardo C, NEJM 2020

Enasidenib/Ivosidenib with Induction Chemotherapy

Memorial Sloan Kettering Cancer Center

ARA-C = cytarabine; DNR = daunorubicin; IDR = idarubicin

Enasidenib/Ivosidenib with Induction Chemotherapy

Stein E, et. al Blood 2020

Novel Investigational Therapies are Effective

Transcription Factor Modifiers in Action - Menin Inhibitors

Best Response at data cutoff	Response Evaluable n = 31 (%)
Overall Response Rate*	15/31 (48%)
CR/CRh	5
CRp	5
CRi/MLFS	5
MRD negative^ ORR	10/15 (67%)
MLLr overall response rate	13/24 (54%)
mNPM1 overall response rate	2/7 (29%)
4 MRD- patients went on to re	ceive stem cell transplant

Conclusions

- Molecular studies are now part of the routine assessment of patients with newly diagnosed and relapsed acute myeloid leukemia
- Despite the approval of novel agents, the median and two year overall survival with these agents leaves many opportunities for the use of novel agents

Overall survival at two years with aza-ven is 40%

- Moving effective agents into combinations earlier in the course of therapy, are crucial for deriving the maximum benefit from novel agents
- Foghorn is exploring a novel approach to altering gene expression through dual inhibition of BRG1/BRM, and subsequent transcription factor modulation, such as SPI1 and others.

Thank You!

Memorial Sloan Kettering Cancer Center steine@mskcc.org

FHD-609: Clinical Entry Point – Synovial Sarcoma

Sam Agresta, MP, MPH & TM Chief Medical Officer, Foghorn Therapeutics

Synovial Sarcoma

Disease Overview

C

- 5-10% of all soft tissue sarcomas
- Most common presentation: Soft tissue tumor of the extremities in young adults
- Characterized by the translocation t(X;18)(p11.2;q11.2)
- SS18 gene product:
 - Encodes for a protein subunit of the mSWI/SNF (BAF) chromatin remodeling complex
 - SS18-SSX gene competes with the endogenous SS18 protein, forming an altered complex lacking the tumor suppressor BAF4

Metastatic Synovial Sarcoma

Disease Overview

- Surgical resection of metastatic disease
 - Can provide long-term relapse-free survival in selected patients.
- Chemotherapy
 - Administered with palliative intent, with the goals of decreasing tumor bulk, diminishing symptoms, improving quality of life, and prolonging survival.
- Advanced unresectable
 - Candidates for clinical trials
- Prognosis:
 - Localized disease: 5-year PFS range from 26% 80.7% and 5-year OS from 40% - 90.7%
 - Metastatic disease: 5-year OS is very low, 0-10%

FHD-609 Targets and Degrades the BRD9 subunit of BAF which is Required for Synovial Sarcoma Cells to Survive

Selective, Potent BRD9 Targeted Protein Degrader

patients / year

* US, EU5, Japan

/ Year*

- Data shown for SYO1 synovial sarcoma cells treated with 16nM of FHD-609 (~200x DC50) for 4h.
- BRD9 is the only protein significantly degraded, with 16-fold reduction, by quantitative MS analysis.
- Similar selectivity observed for 24h treatment of 16nM FHD-609, or higher concentration of 78nM (~1000x DC50) for 4h, data not shown

Robust *in vivo* Activity Observed in Synovial Sarcoma Model and BRD9 Degradation Associated with FHD-609 Treatment

Weekly Dosing of FHD-609 Achieved Sustained BRD9 Degradation

C

SY01 Synovial Sarcoma CDX Model

- Mutation: **SS18-SSX2**
- Inhibited tumor growth
- Dose dependent BRD9 degradation correlated with anti-tumor activity

Sustained BRD9 Degradation

FCGHORN THERAPEUTICS

Superior Tumor Growth Inhibition of FHD-609 in a Synovial Sarcoma Model as Compared to Ifosfamide and Pazopanib

ASKA CDX Model

Mutation: SS18-SSX1

THERAPEUTICS

- Superior tumor growth inhibition compared to ifosfamide and pazopanib
- Complete suppression observed over 30 days at 2 mg/kg of FHD-609

FHD-609 Clinical Development Plan

CLINICAL PLAN

Synovial Sarcoma FIH Phase 1

Metastatic Synovial Sarcoma	Synovial Sarcoma expansion cohorts	Potential for entry into definitive efficacy trials in synovial sarcoma
 Trial Designs Single patient accelerated titration (n=1) 	SMARCB-1 deleted tumors and potentially other indications	
 Convert to 3+3 once relevant PK/PD, safety or clinical activity observed 		

 Assess safety, PK, clinical activity and biomarkers

Biomarkers:

• SS18-SSX1, SS18-SSX2 or SS18-SSX4 translocation

Clinical data as early as H1 2022

Howard "Skip" Burris III, MD, FASCO, FACP Sarah Cannon Research Institute

Sarah Cannon Research Sites

Phase I Drug Development Program

50+ Phase 1 Studies in Presentations at ASCO 2020			500+ First-in-Human Trials Conducted		Clinical Trial Leader in the Majority of Approved Cancer Therapies over the Last 10 Years		
200+ Unique Agents per Year		000	1,2	00+	250+		
		ΥΥΥΥ ΥΥΥΥ	Patients Treated on Phase 1 Trials in 2020		Physicians who Engage in P1 Research		
Fennessee	Florida Cancer	Oklah	Poma Univ	Sarah Cannon	Sarah Cannon	- Cr-lefferson	
Oncology Nashville Franklin	Sarasota Lake Mary Lake Nona	Medie Oklah	cal Center noma City	UK London	HealthONE Denver	Health Philadelphia	

First Two Programs in the Clinic, Broad Pipeline Advancing

Precision Oncology / Breadth and Depth

Program / Target	Modality	Discovery	IND-enabling	Phase 1	Phase 2	Phase 3	Global Rights
FHD-286 (BRG1 / BRM)	Enzyme inhibitor	AML Uveal melanoma		Earl	y Clinical Data (Q4 2021) y Clinical Data (Q4 2021)		FCGHORN' THERAPEUTICS
FHD-609 (BRD9)	Protein degrader	Synovial sarcoma		Ear	y Clinical Data (H1 2022)		FCGHORN THERAPEUTICS
Selective BRM	I) Enzyme inhibitor	BRG1 mutated cancers					
	II) Protein degrader	BRG1 mutated cancers	IND 2022				
Selective ARID1B	Protein degrader	ARID1A mutated cancers					FCGHORN' THERAPEUTICS
Synthetic Lethal Targets (multiple)	I) Enzyme inhibitors						FCGHORN' THERAPEUTICS
	II) Protein degraders						
Transcription Factors (multiple)	I) Transcription factor disruptors						FCGHORN
	II) Protein degraders						THERAPEUTICS
Partnered program (undisclosed)	Transcription factor disruptor						
Gene Traffic Control [®] Platform							
Thank you

Concluding Remarks Q&A

Adrian Gottschalk

Chief Executive Officer, Foghorn Therapeutics