UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549

Wilsington, Dier 2001

FORM 8-K

CURRENT REPORT Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934

Date of Report (Date of earliest event reported): May 23, 2024

Foghorn Therapeutics Inc.

(Exact name of registrant as specified in its charter)

001-39634

(Commission File Number) 47-5271393 (IRS Employer Identification No.)

500 Technology Square, Ste 700

Cambridge, MA

(Address of principal executive offices)

02139 (Zip Code)

(Registrant's telephone number, including area code): (617) 586-3100

Not Applicable (Former name or former address, if changed since last report)

Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions:

□ Written communications pursuant to Rule 425 under the Securities Act (17 CFR 230.425)

Delaware

(State or other jurisdiction of incorporation)

Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12)

D Pre-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b))

Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c))

Securities registered pursuant to Section 12(b) of the Act:

Title of each class	Trading Symbol(s)	Name of each exchange on which registered
Common Stock, \$0.0001 par value per share	FHTX	The Nasdaq Global Market

Indicate by check mark whether the registrant is an emerging growth company as defined in Rule 405 of the Securities Act of 1933 (§230.405 of this chapter) or Rule 12b-2 of the Securities Exchange Act of 1934 (§240.12b-2 of this chapter). Emerging growth company 🗵

If an emerging growth company, indicate by check mark if the registrant has elected not to use the extended transition period for complying with any new or revised financial accounting standards provided pursuant to Section 13(a) of the Exchange Act.

Item 7.01 Regulation FD Disclosure.

Foghorn Therapeutics Inc. (the "Company") is furnishing as Exhibit 99.1 to this Current Report on Form 8-K a presentation dated May 23, 2024, which the Company intends to use in meetings with or presentations to investors. The information in this Item 7.01 (including Exhibit 99.1 attached hereto) is being furnished and shall not be deemed "filed" for purposes of Section 18 of the Securities Exchange Act of 1934, as amended (the "Exchange Act"), or otherwise subject to the liabilities of that section, nor shall it be deemed incorporated by reference into any filing by the Company under the Securities Act of 1933, as amended, or the Exchange Act, except as expressly set forth by specific reference in such filing.

Item 9.01 Financial Statements and Exhibits.

(d) Exhibits

<u>99.1</u>

Exhibit No.

Investor Presentation dated May 23, 2024

Description

SIGNATURES

Pursuant to the requirements of the Securities Exchange Act of 1934, the registrant has duly caused this report to be signed on its behalf by the undersigned hereunto duly authorized.

FOGHORN THERAPEUTICS INC.

/s/ Kristian Humer Kristian Humer

By:

Chief Financial Officer

Date: May 23, 2024

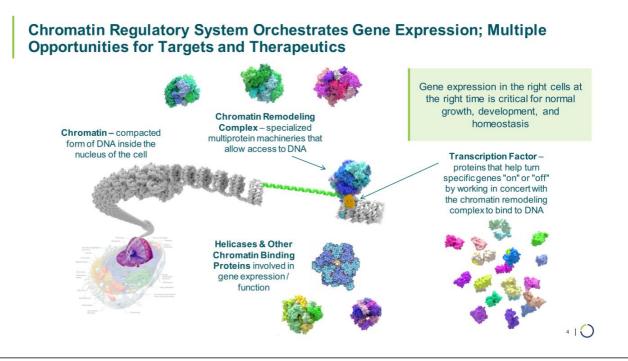
Unique biology Precision therapeutics Broad impact

May 2024

Forward Looking Statements

This presentation contains forward-looking statements that are based on management's beliefs and assumptions and on information currently available to management. All statements other than statements of historical facts contained in this presentation are forward-looking statements by terms such as "could," "may," "might," "will, "likely," "anticipates," "plans," "plans," "seeks," "believes," "estimates," "expects," "continues," "projects" or the negative of these terms or other similar expressions, although not all forward-looking statements contain these words. Forward-looking statements include, but are not limited to, statements concerning: the potential outcomes from our collaboration agreement with Lilly; the initiation, timing, progress and results of our research and development programs and pre-clinical studies and clinical trials, including with respect to our Phase 1 study of FHD-286 in combination with decitabine or cytarabine in relapsed and/or refractory AML patients and anticipated timing of release of clinical data, and the planned Phase 1 dose escalation study of FHD-909 with Loxo@Lilly; our ability to advance product candidates that we may develop and to successfully complete preclinical and clinical studies; our ability to leverage our initial programs to develop additional product candidates using our Gene Traffic Control Platform@; the impact of exogeneous factors, including macroeconomic and geopolitical circumstances, on our and our collaborators' business operations, including our research needs; regulatory developments in the United States and foreign countries; our ability to obtain regulatory approval for FHD-286 and any future product candidates from the FDA and other regulatory authorities; our ability to dentify and enter into future license agreements and collaborations; our ability to continue to rely on our CDMOS and CROs for our manufacturing and research needs; regulatory developments in the United States and foreign countries; our ability to attract and retain key scientific a

2 1 0



What if ... It were possible to develop a therapeutic

approach to treat half of all cancers?

Chromatin biology is implicated in up to 50% of tumors
Potential for therapeutic area expansion (e.g., I&I)

3 I 🔿

Foghorn has Progressed Multiple Programs Against Challenging Targets

BRM/BRG1: Implicated across solid and hematologic malignancies <u>Challenge</u>: Can dual inhibition yield clinical benefit?

BRM: Potential in up to 5% of all solid tumors <u>Challenge</u>: Industry has failed to develop a selective inhibitor

CBP: Role in bladder, colorectal, breast, gastric, lung cancers Challenge: Toxicities with dual inhibition, difficulty engineering selectivity

EP300: Role in both solid and heme malignancies <u>Challenge</u>: Toxicities with dual inhibition, difficulty engineering selectivity

ARID1B: Role in ovarian, endometrial, colorectal cancer <u>Challenge:</u> Industry has had no success with selective target engagement

... and more.


510

Foghorn's Unique Platform Capabilities Evolved from Drugging a Specific Chromatin Remodeling Complex (BAF)*

Challenge: produce, manipulate, study, and drug a 1.5 megadalton multi-protein complex

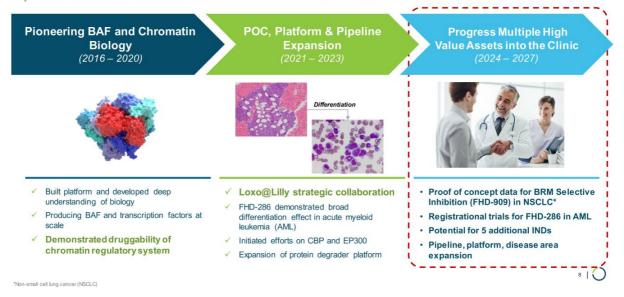
BAF Chromatin Remodeling

Assays and Biochemistry Capabilities

- Purification & recombinant production of large proteins and protein complexes
- Biochemistry & biophysics of intrinsically disordered proteins
- High throughput screening for binders and inhibitors

Protein Degrader Platform

- Proprietary linker library
- Suite of assays specific to degradation (i.e., synthesis kinetics, degradation kinetics)
- · Optimal E3 ligase pairing
- · Ternary complex modeling
- Long-acting formulation technology

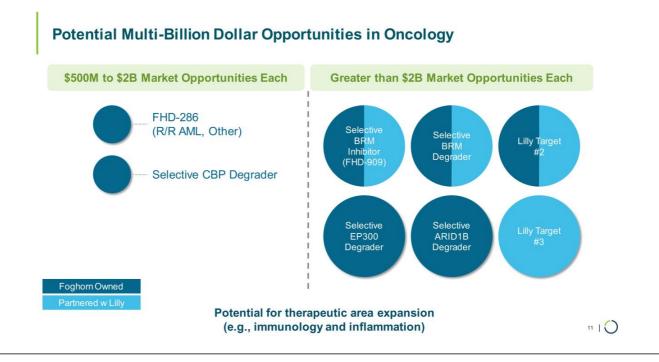

Current and Future Applications

- · Selectively drugging highly similar proteins / hard to drug proteins
- Disease area expansion
- · Going beyond chromatin novel biology with complex proteins
- Payloads for ADCs*

*Brahma-Associated Factor (BAF). Antibody Drug Conjugates (ADCs).

710

The Next Foghorn Chapter: Delivering Multiple Potential Blockbusters into the Clinic



Foghorn Is Advancing a Pipeline of First-in-Class Precision Therapeutics with Potential for Broad Application in Oncology ...

Modality	Program	Disease	Discovery	Pre-Clinical	Phase 1	Phase 2/3	Commercial Rights
Enzyme	FHD-286 (BRG1/BRM)	Relapsed/Refractory AML					FCGHORN'
nhibitors	FHD-909 (Selective BRM)	BRG1 mutant cancers (e.g., NSCLC, bladder, endometrial, colorectal)					LOXO FCGHORN
	Partnered Undisclosed	Undisclosed					LOXO FUGHORN
	Selective BRM	BRG1 mutant cancers (e.g., NSCLC, bladder, endometrial, colorectal)					LOXO FUGHORN
Protein		EP300 mutant cancers (e.g., bladder, gastric, breast, NSCLC, colorectal)					FCGHORN
Degraders	Selective EP300	EP300 dependent cancers (e.g., prostate, DLBCL), CBP mutant cancers (e.g., NSCLC, bladder)					FOGHORN
	Selective ARID1B	ARID1A mutant cancers (e.g., ovarian, endometrial, colorectal)					FOGHORN
Transcription Factor Disruptors	Undisclosed	Undisclosed					FOGHORN
3 Discovery Programs	Undisclosed	Undisclosed					LOXO FUGHORN

... with Multiple Near-Term Value Inflection Points through 2026

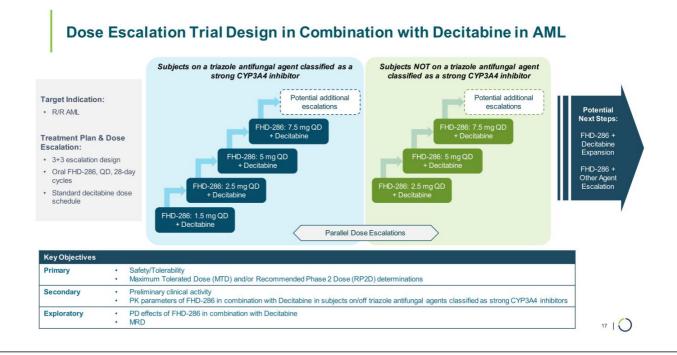
Clinical & Pre-Clinical Programs

- FHD-286 Dual BRM/BRG1 Inhibitor
- FHD-909 (a.k.a. LY4050784) Selective BRM Inhibitor
- Selective CBP Degrader
- Selective EP300 Degrader
- Selective ARID1B Program

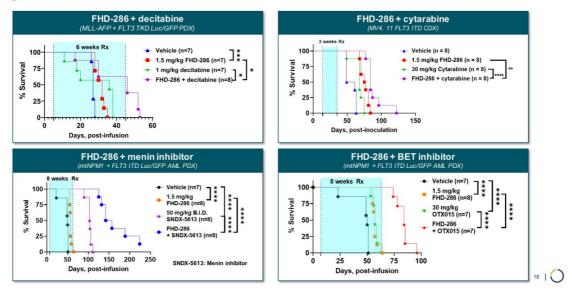
FHD-286: Dual BRM/BRG1 Inhibition

Targeting BAF Dependency in Cancer

Exploring BAF Dependency in Cancer with FHD-286 – Potent, Oral Dual Inhibitor of BRM and BRG1



Significant Opportunity for Novel, Effective Therapy in Patients with R/R AML

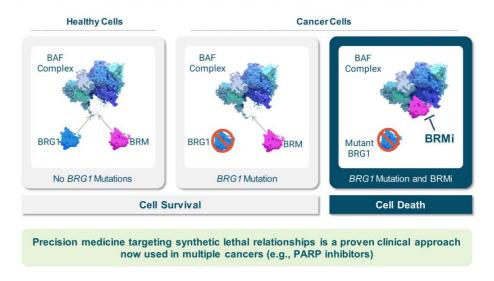

		Initial FHD-286 Opport	tunity
Most cases of AML are not curable	40% of AML cases have no actionable mutations	~17,000 Drug Treatable R/R	Patients*
 Greater than 50% patients relapse Intensive chemo – still standard of care 	 No meaningful developments for broad AML patient population since Venetoclax Recent developments focused on actionable mutations (e.g., FLT3, IDH1/2, MLL**) 	 Post Ven/Aza: No standard of care CRc rates 15-17% Median OS ~3mo High unmet need 	
FHD-286 Oppo	rtunity: R/R Patients and Potentially	Newly Diagnosed Patients	
*Source: Decision Resources Group 2025 Forecast: **Menin inhibitors not yet ay	proved: R/R: relapsed/refractory: CRc: composite complete response		15 🚫

FHD-286 Induced Differentiation Across a Broad Range of Genetic Backgrounds in Phase 1 Study

Dose Level	Mutations	Cytogenetics Risk	Starting CD11b%	Max CD11b%	CD11b+ Fold Change	Starting CD34%	Min CD34%	CD34+ % Decrease	
	New 200	No. 44		State of		1			
10mg	N/A	Adverse	7	62	9.2x	94	27	(71%)	
7.5mg	CBFB (locus at 16q22)		2	94	59.4x	70	2	(97%)	
.5mg	KMT2A rearrangement	Adverse	3	58	21.4x	85	9	(90%)	
7.5mg	RUNX1, KRAS, ASXL1, JAK2, TET2, EZH2, ETNK	Adverse	5	73	15x	95	18	(81%)	
7.5mg	N/A	Adverse	8	52	6.3x	94	33	(65%)	
7.5mg	ASXL1, TP53, U2AF1	Adverse	19	63	3.3x	92	51	(45%)	
5mg	RUNX1, NRAS, KRAS, SF3B1, ASXL2, CSF3R, GATA2	Adverse	3	74	29x	94	19	(80%)	
5mg	RUNX1, NRAS, ASLX1	Adverse	4	97	22.8x	98	7	(93%)	
5mg	N/A	Adverse	6	79	13x	93	11	(88%)	
5mg	TET2, WT1 GATA2 PLCG2 ARHGEF28, BRD4, CDK12, DDX41, KMT20, PARP1, ZRSR2		3	24	8.1x	86	62	(27%)	×.
5mg	N/A	Adverse	4	28	6.5x	93	66	(29%)	7
5mg	DNMT3a, TET2		21	88	4.1x	30	4	(88%)	CD34 (leukemi
									cell marker)
2.5mg	NRAS, WT1	Adverse	3	13	4.8x	93	89	(4%)	decreases
	CD11b (mar	ker of differe	ntiation) in	creases 考					16

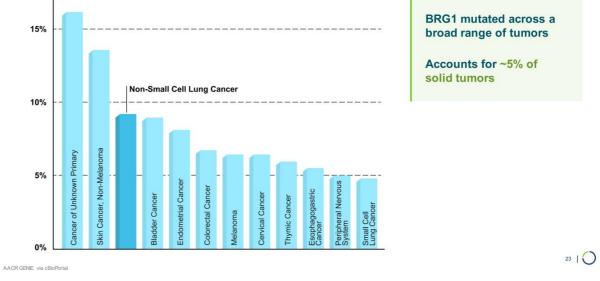
Pre-Clinical Data Demonstrated Combination Potential with Multiple Agents in AML

FHD-286 Has Potential in Multiple High-Value Oncology Indications

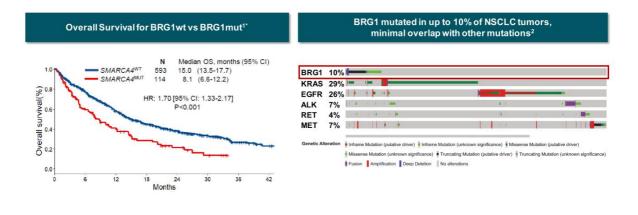

R/R AML combinations (e.g., decitabine, menin inhibitors, others)	Front-Line AML Combination
TKI Combination	Other Hematologic and Solid Tumors

Selective BRM Modulators For BRG1 Mutated Cancers

BRM Selective Inhibitor FHD-909 IND Submitted Q2'24, BRM Selective Degrader Continues Late-Stage Pre-Clinical Development

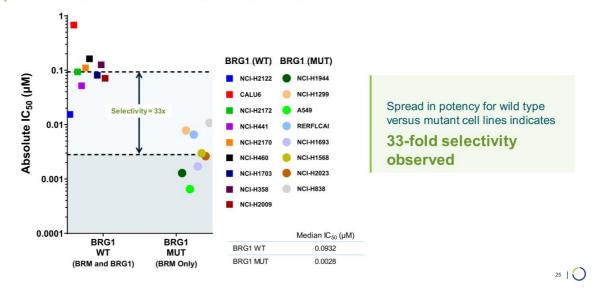

	BRM Selective Inhibitor (FHD-909)	BRM Selective Degrader			
Biology		ship between BRM (SMARCA2) and 1 (SMARCA4)			
Stage	IND submitted in Q2'24	Advancing in parallel through late pre- clinical development			
Opportunity	BRG1 mutated cancer including ~10% of NSCLC and up to 5% of all solid tumors				
Loxo@Lilly Partnership	50/50 global R&D cost share 50/50 U.S. economics tiered ex-U.S. royalties starting in the low double-digit range and escalating into the twenties				

BRM Selective Inhibition is a Promising Strategy to Exploit the Synthetic Lethal Relationship Between BRM and Mutated BRG1

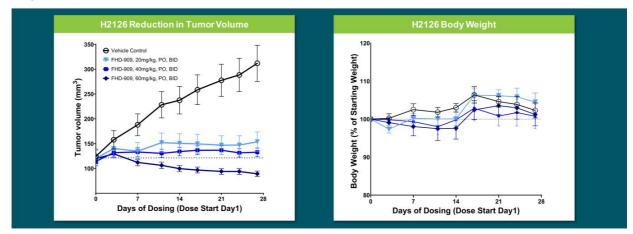


22 | 🔿

BRG1 is Mutated in Up to 10% of NSCLC; Up to 5% of Solid Tumors



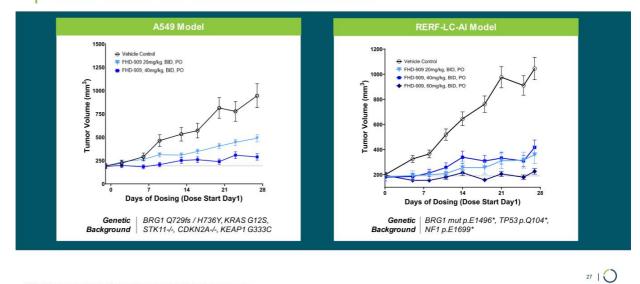
Patients with NSCLC Harboring BRG1 Mutations Have Significantly Worse Clinical Outcomes and Define a High Unmet Need Patient Population



1. Alessi JV, et al., 2021; 2. TOGA via cBioPortal * BRG1 = SMARCA4 24 | 🔿

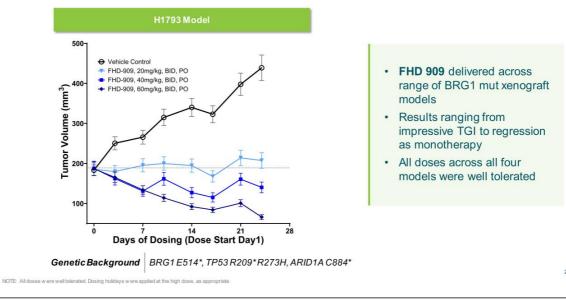
FHD-909 Demonstrated Approximately 33-fold Selectivity Across 17 BRG1 Mutant and Wild-Type Cell Lines *In Vivo*

FHD-909 Monotherapy Demonstrated Regression *In Vivo* in H2126 BRG1 Mutant NSCLC Model and Was Well Tolerated

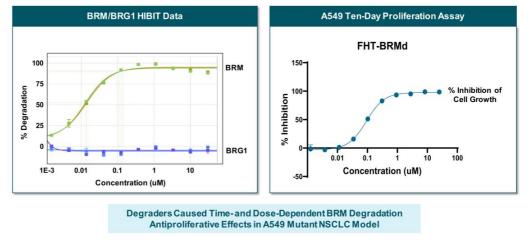


Genetic Background: BRG1 W764R, TP53 E62*, STK11-/-, CDKN2A-/-, KEAP1 R272C

NOTE: All doses were well tolerated. Dosing holidays were applied at the high dose, as appropriate

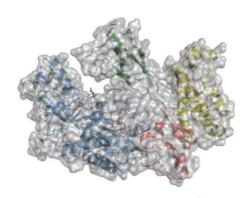

26 | 🔿

FHD-909 Monotherapy Demonstrated 96% TGI in A549 and Tumor Stasis in RERF-LC-AI Mutant NSCLC Models


NOTE: All doses were well tolerated. Dosing holidays were applied at the high dose, as appropriate

FHD-909 Monotherapy Demonstrated Regression in H1793 BRG1 Mutant NSCLC Model

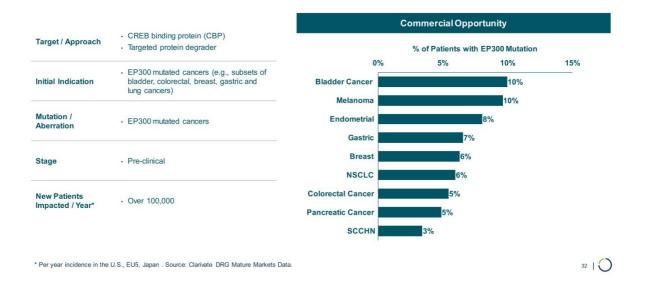
28 | 🔿


BRM Selective Degrader Achieved Complete BRM Degradation and Cell Growth Inhibition *In Vitro*

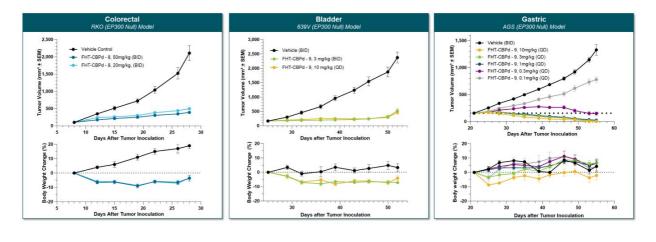
Data as of Q4 2021

29 | 🔿

CBP and EP300 Proteins – A Decades Long Challenge in Selectivity

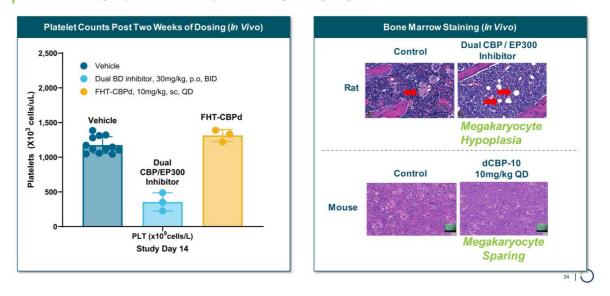


- CBP and EP300 are chromatin regulators and histone acetyltransferases
- **CBP** and **EP300** are virtually identical, thus achieving selectivity is a significant challenge
 - Dual targeting has revealed tolerability and safety issues

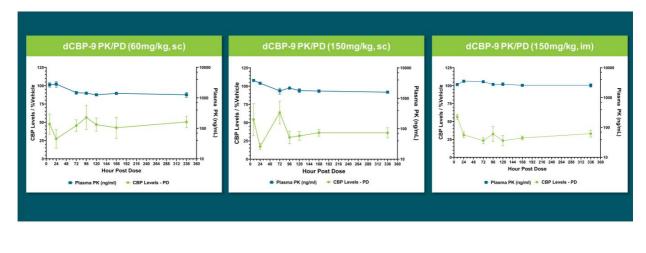

Foghorn is working on two separate programs, each with their own defined dependencies and patient populations

Selective CBP Protein Degrader For EP300 Mutated Cancers

Summary: Selective CBP Protein Degrader for EP300 Mutated Cancers



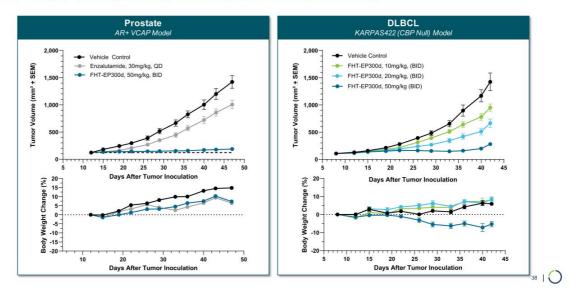
Selective CBP Degradation Resulted in Significant Tumor Growth Inhibition in Colorectal & Bladder and Regression in Gastric EP300 Null Models



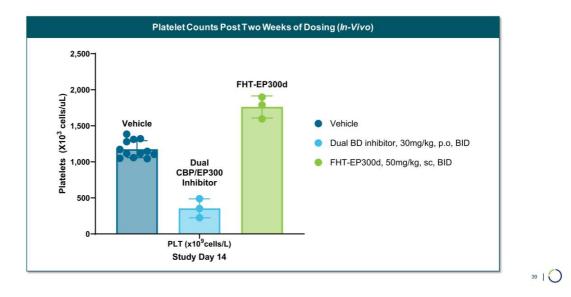
33

Pre-Clinical Studies Indicate Selective CBP Degradation Did Not Show Thrombocytopenia and Spares Megakaryocytes *In Vivo*

Pre-Clinical Studies Indicate Long-Acting Injectable Formulations of CBP Degrader Could Enable At Least Once Every 2 Weeks Dosing

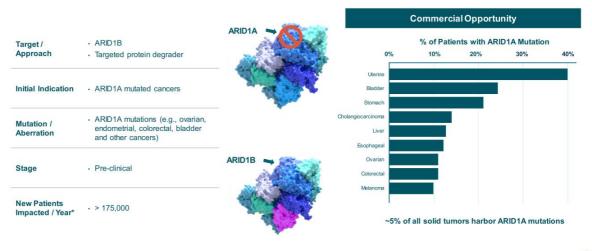


Selective EP300 Protein Degrader For CBP Mutated and EP300 Dependent Cancers

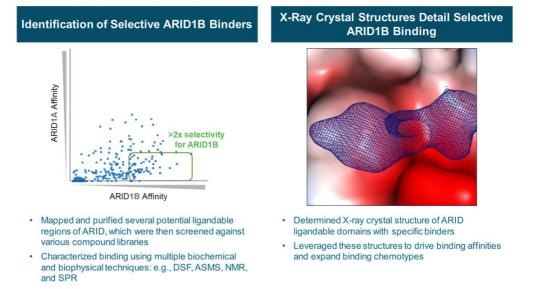

Summary: Selective EP300 Protein Degrader for CBP Mutant & EP300 Dependent Cancers

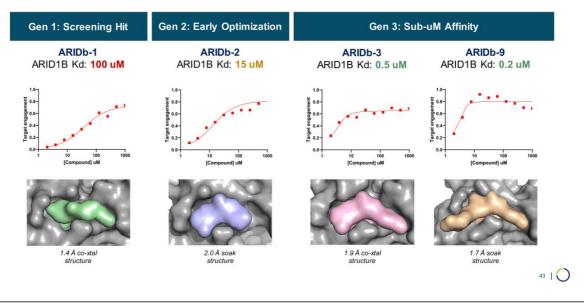
Target /	 E1A binding protein p300 (EP300) Targeted protein degrader AR+ Prostate DLBCL Bladder, melanoma, others 	Commercial Opportunity								
Approach		EP300 Dependent Cancers	CBP Mutant Cancers							
Initial Indications		Solid Tumors AR+ mCRPC	% of Patients with CBP Mutation 0% 5% 10% 15%							
Mutation / Aberration	EP300 dependent cancers CBP mutant cancers	 HR+ breast Hematologic malignancies DLBCL 	Bladder 10% Melanoma 10%							
Stage	Pre-clinical	Multiple Myeloma	Colorectal 8%							
New Patients Impacted / Year*	• Over 100,000		Endometrial Breast 6%							
* Per year inciden	ce in the U.S., EU5, Japan. Source: Clarivate DRG Ma	ature Markets Data.	37							

EP300 Degradation Results in Significant Tumor Growth Inhibition in AR+ VCAP Prostate and KARPAS422 DLBCL Models



Selective EP300 Degradation Does Not Show Thrombocytopenia In Vivo


Selective ARID1B Protein Degrader For ARID1A Mutated Cancers



* Per year incidence in the U.S., EU5, Japan. Source: Clarivate DRG Mature Markets Data.

Compound Screening and Structure-Based Optimization Yielded Selective ARID1B Binders

Structure-Based Optimization Drove Improved ARID1B Binding Affinity from 100 uM to less than 200 nM

Multiple Near-Term Value Inflection Points through 2026

Developing First-In-Class Precision Medicines Targeting Major Unmet Needs in Cancer

Leader in Unique Area of Cancer Biology

Foghom is a leader in targeting chromatin biology, which has the potential to address underlying dependencies of many genetically defined cancers

Platform with initial focus in oncology, therapeutic area expansion potential

Potential Chromatin biology is

implicated in up to 50% of tumors, potentially impacting ~2.5 million patients

Foghorn's current pipeline potentially addresses **more than 500,000** of these patients

Broad pipeline across a range of targets and small molecule modalities

Well-

Funded

\$206.7 million in cash

and equivalents

(as of 3/31/2024)

\$103.4 million net

proceeds from May 2024

financing

Provides runway into

2027

Value Drivers

Anticipate data from the Phase 1 study of FHD-286 in combination with decitabine in **H2'24**

BRM Selective Inhibitor (FHD-909), partnered with Loxo@Lilly, IND submitted to FDA, Phase 1 initiation anticipated in H2'24

Advancement of preclinical assets (BRM Selective Degrader, CBP, EP300, ARID1B) towards INDs

Major Strategic Collaboration

Strategic collaboration with Loxo@Lilly; **\$380 million** upfront; 50/50 U.S. economic split on two lead programs

Unique biology Precision therapeutics Broad impact

May 2024

Loxo@Lilly Collaboration Validates Foghorn Approach: Significant Upfront and Deal Economics

FHD-286: Dual BRM/BRG1 Inhibition Targeting BAF Dependency in Cancer

Additional Information

Potential First-in-Class Broad-Based Differentiation Agent With Significant Combination Potential in AML

Peripheral Blood and Bone Marrow Blast Count Reduction Led to ANC Recovery in a Subset of Patients

Diagnosis	Dose Level	Mutations	Cytogenetic Risk	Cycles on Study	ANC Recovery	Peripheral Starting Blast %	Peripheral Min Blast %	Peripheral Blast % Change	BMA Starting Blast %	BMA Min Blast %	BMA Blast % Chang
AML	10mg	N/A	Adverse	2.2	YES	15	0	(100)	40	6	(85)
AML		DNMT3A, U2AF1, DDX41, CUX1, TP53	Adverse	0.5	N	20	0	(100)	13	2	(85)
AML		NRAS, SF3B1	Intermediate	7.3	N	20	0	(100)	12	5	(58)
AML	-	NRAS, BRCA1, MEN1, CDKN1Ap	Adverse	0.3	N	80	11	(86)	52	-	(58)
AML		D17Z1, TP53	Intermediate	0.6	N	9	1	(89)	9		
AML		GATA2, ETV6, KDR	Intermediate	1.4	N	2	2	0	5	-	-
AML	7.5mg	RUNX1, KRAS, ASXL1, JAK2, TET2, EZH2, ETNK1	Intermediate	2.9	N	83	1	(99)	83	2	(98)
AML	7.5mg	ASXL1, TP53, U2AF1	Adverse	1.3	N	-	5	-	36	14	(61)
AML	7.5mg	KMT2A rearrangement	Adverse	2.8	YES	97	5	(95)	89	48	(46)
AML	7.5mg	N/A	Adverse	4.1	YES	28	4	(86)	25	15	(40)
* MDS	7.5mg	DNMT3A, TP53	Adverse	1.4	N		0		8	5	(38)
AML	7.5mg	DNMT3A, KRAS, NRAS	Adverse	1.8	N	32	2	(94)	47	49	4
AML	7.5mg	CBFB (locus at 16q22)	Favorable	1.7	YES	32	0	(100)	27	29	7
AML	7.5mg	N/A	Adverse	0.1	N	35	19	(46)	72		-
AML	7.5mg	ASXL1, BCOR, FLT3ITD, NF1, CBL, H1-B, NFE2	Adverse	0.7	N	8	7	(13)	25	-	()=);
AML	7.5mg	N/A	-	0.5	N	0	0	0	8	-	-
AML	7.5mg	NRAS, ASXL2, SRSF2	Adverse	0.1	N	93	-		17	-	-
AML	7.5mg	ASXL1, DNMT3A, TET2, TP53	Adverse	0.5	N	-	4	-	-	-	-
AML	7.5mg	FLT3ITD	Favorable	0.8	N	0	39	2	12	14	223

U O

Peripheral Blood and Bone Marrow Blast Count Reduction Leading to ANC Recovery in a Subset of Patients

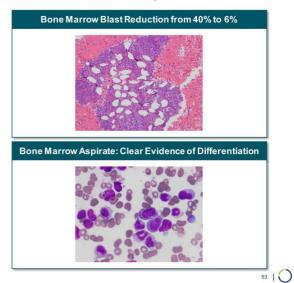
Diagnosis	Dose Level	Mutations	Cytogenetic Risk	Cycles on Study	ANC Recovery	Peripheral Starting Blast %	Min	Peripheral Blast % Change	BMA Starting Blast %	BMA Min Blast %	BMA Blast % Chang
								(10.01
AML	5mg	RUNX1, NRAS, ASLX1	Adverse	3.1	YES	29	0	(100)	35	12	(66)
AML	5mg	N/A	Adverse	8.0	N	-	2	-	11	7	(36)
AML	5mg	N/A	Adverse	1.8	YES	6	0	(100)	24	16	(33)
AML	5mg	ASXL1, DNMT3A, KRAS, PTPN11, WT1, GRIN2AWT1	Adverse	2.0	N	32	38	19	49	52	6
* MDS	5mg	RUNX1, NRAS, KRAS, SF3B1, ASXL2, CSF3R, GATA2	Adverse	1.0	YES	5	13	160	11	14	27
* MDS	5mg	DNMT3a, TET2	Intermediate	1.9	YES	0	0	0	1	2	100
AML	5mg	TET2, WT1, GATA2, PLCG2, ARHGEF28, BRD4, CDK12, DDX41, KMT20, PARP1, ZRSR2	Intermediate	1.7	YES	9	0	(100)	18	46	156
AML	5mg	KRAS, PTNP11, IRF8, MSH6, RUNX1		1.3	N	17	7	(59)	-	80	-
AML	5mg	TP53	Adverse	0.7	N	41	20	(51)	18		
AML	5mg	TP53	Adverse	0.5	N	44	35	(20)	55	-	-
AML	5mg	PPM1D, TP53	Adverse	0.5	N	15	12	(20)	18	-	
AML	5mg	KRAS, TET2	Adverse	0.6	N	37	32	(14)	56	-	-
* MDS	5mg	ASXL1, DNMT3A, IDH1, SRSF2, SF3B1, TET2		0.4	N	0	0	0	0		-
AML	5mg	N/A	Adverse	0.5	N	10	11	13	-	-	-
AML	5mg	ASXL1, NRAS, EP300, STAG2, RUNX1, TET2	Adverse	0.1	N	25	32	25	11	141	-
AML	5mg	CEBPA, KMT2C, NCOR1, CBL	-	0.3	N	48	75	56	64	-	-
AML	2.5mg	NRAS, WT1	Adverse	1.4	N	36	62	72	45	74	64
AML	2.5mg	BCR/ABL, PMLRARA, RUNX1, TET2	-	2.4	N	68	28	(59)	30	-	-
AML	2.5mg	N/A	Adverse	0.8	N	7	0	(100)	22		
AML	2.5mg	DNMT3A, KRAS, TP53	Adverse	0.8	N	28	40	46	45	-	
AML	2.5mg	DNMT3A, TP53	Adverse	1.0	N	4			25		
nt											

Signs of Differentiation in Heavily Pre-Treated, Secondary AML Patient with Abnormal Karyotype in Phase 1 Dose Escalation Study

Patient Background:

- · 47-year-old male, secondary AML
- · Abnormal karyotype: Del (7Q), Inv (3), Der (7;12), -8, ADD(1)

Prior AML Treatment:


Progressive disease: 4 lines prior treatment and 2 bone marrow transplants

Prior non-AML treatment:

• MDS with inv(3) and der(7;12) and ASXL1 mut. Received AZAx 4.

Initiation of FHD-286 at 10 MG Dose:

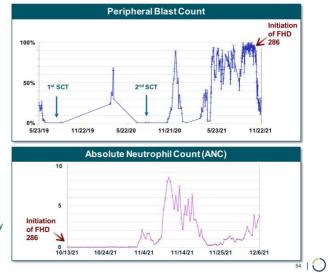
Bone marrow blast from 40% to 6% with clear evidence of differentiation with persistence of cytogenetics abnormalities. ANC recovery.

Clinical Benefit in Heavily Pre-Treated Patient in Phase 1 Dose Escalation Study

Patient Background:

- · 25-year-old male, treatment-related AML
- KMT2A rearrangement

Prior AML Treatment:


Progressive disease with CNS Leukemia: 7 lines prior treatment and 2 bone marrow transplants

Prior non-AML treatment:

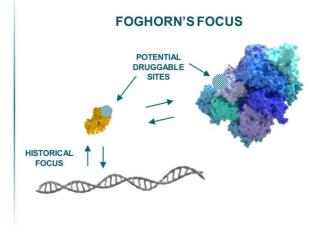
• Ewing's sarcoma: Treated with Chemo/RT/Surgery (VCR, doxo, cyclophos, ifos, etoposide)

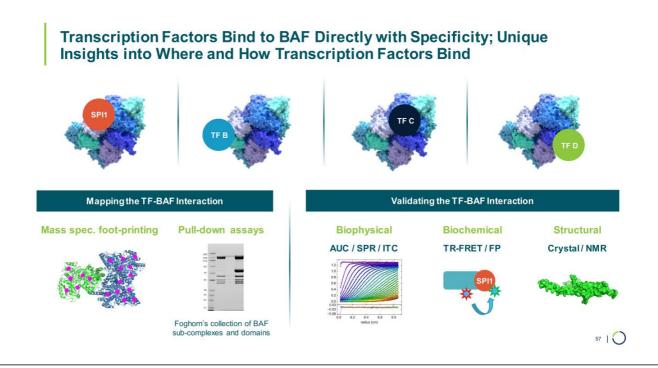
Initiation of FHD-286 at 10 MG Dose:

- Drop in peripheral blast, 97% to 5%
- Bone marrow reduction from 89% to 48%, with ANC recovery

Foghorn's Novel Approach to Drugging Transcription Factors Enabled by Its Protein Production and Discovery Capabilities

Transcription Factors are Compelling Drug Targets...


- · Highly involved in gene expression
- Implicated in range of cancers and other diseases


...But Historically Difficult to Target...

- Featureless surface: no druggable binding pocket
- · Tight interactions with DNA: undruggable affinities

Foghorn Has a New Approach Focusing on Interaction with BAF

- Druggable binding pockets
- Druggable affinities

Unique biology Precision therapeutics Broad impact

May 2024